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We propose a new, very flexible version of the Rayleigh–Schrödinger perturbation method
which admits a lower triangular matrix in place of the usual diagonal unperturbed propa-
gator. The technique and its enhanced efficiency are illustrated on rational anharmonicities
V (1)(x) = β × polynomial(x)/polynomial(x). They are shown tractable, in the intermediate
coupling regime, as O(β − β(0)) perturbations of exact states at non-vanishing β(0) �= 0. In
this sense our method bridges the gap between the current weak- and strong-coupling expan-
sions.
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1. Introduction

Schrödinger equations with anharmonic potentials ω2x2 + βV (1)(x) are often
solved perturbatively. It is well known that many practical implementations of this ap-
proach are full of contradictions, well illustrated by the popular quartic example with
V (1)(x) = x4. Its weak-coupling energy estimates E(β) ≈ E(0)+βE(1)+· · ·+βNE(N)

are easily generated via recursion relations [1] but this approximation diverges in the
limit N → ∞ at anynonzero coupling constant β [2]. An alternative, strong-coupling
series in powers of β−2/3 exists and converges for the sufficiently large |β| [3]. Unfor-
tunately, the explicit evaluation of its coefficients is by far not easy [4]. In the literature
many people have advocated, therefore, a replacement of the traditional quartic model
by a non-polynomialanharmonicity

V (1)(x) = x2

1+ Bx2
≡ 1

B

(
1− 1

1+ Bx2

)
, B > 0. (1)

Its merits belong to the two separate categories. Firstly, its bounded character enables
us to avoid the divergence of the weak-coupling series. This has been emphasized by
several authors [5]. Secondly, the existence of a few elementary solutions at certain
exceptional couplings β = β(0) [6] enables us to contemplate their perturbations, say,

E(β) = E(β(0))+ λE(1) + λ2E(2) + · · · , λ = β − β(0), (2)

139

0259-9791/00/1200-0139$18.00/0  2000 Plenum Publishing Corporation



140 M. Znojil / Perturbation method with triangular propagators

in anharmonic regime, near any solvable β(0) �= 0 [7]. An exceptional character of
the latter intermediate-coupling expansion was its shortcoming. Its feasibility relied on
a replacement of the traditional unperturbed spectrum by certain auxiliary continued
fractions and did not seem amenable to any sufficiently efficient generalization [8].

In the present paper we shall consider the whole class of the Padé-like potentials

V (β, x) = ω2x2 + β
(

t∑
d=0

Bdx
2d

)−1 t−1∑
n=0

Anx
2n, Bt �= 0. (3)

An innovative construction of their perturbation solutions of the type (2) will be proposed
and described in detail. We shall demonstrate that the current and usual “weak-coupling”
and “strong-coupling” perturbation studies may be complemented by the broad variety
of the “medium” expansions using 0 < β(0) < ∞. We shall show that near many non-
vanishing “intermediate” couplings β(0), the perturbative treatment of the models (3)
may remain feasible and unexpectedly easy. In this way, our innovation could inspire
an improvement of the current situation in perturbation calculations where people often
decide to work just with the respective zero-order couplings β(0) = 0 or β(0) = ∞.
Of course, these “traditional” approaches are quite often able to achieve a satisfactory
convergence just in an immediate vicinity of these two extreme values of β.

Our “intermediate-coupling” project opens several technical questions. Firstly, at
any t � 1, the zero-order solutions must be constructed in anharmonic regime. A rep-
resentative sample of these reference systems is described thoroughly in section 2. It
underlines the real phenomenological appeal of equation (3) in comparison with the
more popular polynomial models.

At a particular anharmonic β(0) �= 0 the usual construction of a complete unper-
turbed basis is prohibitively complicated. After a return to harmonic basis, numerical
integration is needed for evaluation of the necessary matrix elements of V (1)(x) and the
computation of corrections is difficult even in the lowest order Rayleigh–Schrödinger
approximation [9]. Section 3 offers the remedy. Schrödinger equation is represented in
a non-orthogonal basis. Its resulting (2t + 1)-diagonal matrix form is then much better
accessible to a purely numerical matrix-inversion perturbative treatment.

In our main section 4 we deny the latter numerical “brute force” philosophy and
intend to soften it significantly. Re-installing the more traditional recurrent interpretation
of perturbation algorithms we describe a new approach to the Schrödinger-like families
of equations with a banded-matrix form of their Hamiltonians. Our main idea is amply
illustrated by its application to anharmonicities (1). Its core is a maximal simplification
of the unperturbed propagator R. In contrast to its general-matrix form in older methods
[10] we shall be able to reduce it to the mere “half-filled”, triangular matrix.

Section 5 is the summary showing how our new approach opens a way towards
a broader variability of shapes of the theoretical and/or phenomenological interaction
models. With due attention paid to the non-hermiticity of our (quasi-)Hamiltonian ma-
trices (cf. also appendix), our new version of perturbation recipe seems well prepared
for its extensions as well as further practical computational applications.
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2. Solvable oscillators with β(0) �= 0

2.1. The simplest model witht = 1

Non-polynomial equation (3) with t = 1 is often recalled as one of the simplest
unsolvable anharmonic models in one dimension [11]. In place of using the differen-
tial form of its Schrödinger equation, wave functions ψ(β, x) ∈ L2(−∞,∞) are ex-
panded in the harmonic (i.e., Hermite or Laguerre) polynomial basis {|n〉}∞n=0. The ansatz
ψ(β, x) = (1 + Bx2)

∑∞
n=0〈x|n〉hn and scaling ω → 1 then give [12] the three-term

recurrences
a0 d0

c1 a1 d1

c2 a2
. . .

. . .
. . .



h0

h1

h2
...

 = 0, (4)

an = β + (1+ Bαn)(εn − E), αn = εn/2 = 〈n|r2|n〉 = 2n+ �+ 3/2,

dn = Bβn(εn − E), βn = 〈n|r2|n+ 1〉 = [(n+ 1)(n+ �+ 3/2)
]1/2

,

cn = Bβn−1(εn − E), n = 0, 1, . . . .

Marginally, let us note that the parity (−1)�+1 of the wave functions with � = −1, 0
admits an immediate re-interpretation as angular momentum � = 0, 1, . . . in three di-
mensions with the regularity ψ(β, r) ∼ r�+1 of the radial wave functions near the ori-
gin [13].

2.1.1. Termination conditions and exact solutions
The existence of the terminating exact solutions of equation (4) is well known [6].

Let us mark them by a superscript (0). With normalization h(0)q �= 0 their termination

Table 1
Low-lying spectra in the four deepest solvable double wells (1).

β(0) q Energies

81.88 3 18.999999996 19. 22.765764732 22.765764788
26.526337990 26.526338492 30.281295324 30.281297900

64.89 3 17. 17.000000131 20.733677525 20.733679219
24.459570379 24.459582299 28.176801248 28.176862466

52.05 3 15.301693677 15.301695784 18.999974785 19.
22.686594466 22.686760593 26.359595371 26.360391029

49.91 2 14.999996593 15. 18.690932465 18.690972685
22.369232872 22.369494489 26.032568100 26.033806209

39.12 3 13.356890687 13.356934267 17. 17.000474393
20.621974574 20.624839279 24.215073151 24.227701473
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property

h
(0)
q+1 = h

(0)
q+2 = · · · = 0 (5)

requires that c(0)q+1 = 0. This means that E(0) = 4q + 2�+ 7 ≡ εq+1. The related energy
is not arbitrary. Vice versa, bound states ψ(β, x) with E �= E(0) have to be defined
by infinite series [14]. In one dimension a sample of their spectrum is given in table 1.
It indicates that with a growth of the barrier the low-lying energies merge in almost
degenerate doublets with opposite parities. According to figure 1 a very good fit of these
numerical values E = E(β) is provided by parabolas. One may expect that besides our
ansatz (2) a useful methodical alternative could be also sought in perturbative expansions
of couplings β = β(E) and of the related Sturmian wave functions [12,15].

Even for the terminating bound states with E = E(0) we have to guarantee that
the secular determinants vanish. Up to q = 3 the latter condition is non-numerical. For
illustration we may fix B = B(0) = 1 and choose the even parity � = −1. Then we get
the elementary implicit polynomial definitions

y − 6 = 0, q = 0,
y2 − 26y + 152 = 0, q = 1,

y3 − 68y2 + 1372y − 8304, q = 2,
y4 − 140y3 + 6588y2 − 123216y + 777600 = 0, q = 3,

(6)

Figure 1. Coupling β vs. energy E for the first four bound states in potential (1) with B = 1.
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Table 2
Complete list of the t = 1 roots β(0).

q Parity β(0) Excitation E(0)

0 even 6. ground state 5.
odd 10. ground state 7.

1 even 8.8768943744 first 9.
17.123105626 ground state 9.

odd 12. first 11.
26. ground state 11.

2 even 11.490856174 second 13.
19.556337712 first 13.
36.952806114 ground state 13.

odd 13.874580313 second 15.
28.206711029 first 15.
49.918708658 ground state 15.

3 even 13.816182739 third 17.
22.170398699 second 17.
39.118906994 first 17.
64.894511568 ground state 17.

odd 15.630566921 third 19.
30.443898070 second 19.
52.049183356 first 19.
81.876351653 ground state 19.

of the partially solvable couplings y = y(q) ≡ β(0). Besides their q = 0 (linear), q = 1
(quadratic) and q = 2 (Cardano) explicit solutions we may write down all the four exact
q = 3 roots

β(0)= 35+ ε1

√
127 − 2

√
6821 cos

(1

3
�+ π

6

)
+ ε2

√
127 + 2

√
6821 sin

(1

3
�+ π

3

)
+ ε3

√
127− 2

√
6821 sin

1

3
�, � = arctg

9
√

63908723442661575155

45902084710

with (ε1, ε2, ε3) = (−,−,+), (−,+,−), (+,−,−) and (+,+,+).
All our termination-compatible q � 3 values of the coupling β(0) remain real (cf.

their list in table 2). All the related potentials acquire a double well shape since all our
roots satisfy its sufficient condition β(0) > 1.

2.2. Unperturbed solutions witht = 2

The t = 2 option in (3) gives the “first nontrivial” potential

V (x) = x2 + µx2 + ν
(1− gx2)2 + f x2

. (7)
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Mutatis mutandis, equation (4) becomes replaced by the q + 3 relations

a0 d
[1]
0 d

[2]
0

c
[1]
1 a1 d

[1]
1 d

[2]
1

c
[2]
2 c

[1]
2 a2 d

[1]
2 d

[2]
2

. . .
. . .

. . .
. . .

. . .

c
[2]
q−1 c

[1]
q−1 aq−1 d

[1]
q−1

c[2]q c[1]q aq

c
[2]
q+1 c

[1]
q+1

c
[2]
q+2




h0

(0)

h1
(0)

...

hq
(0)

 = 0. (8)

The last row implies that c[2]q+2 = 0 and fixes the energy E(0) = 4q+2�+11. The coupled
rest remains over-determinate and defines the q + 1 unknown coefficients (normalized,
say, to h(0)q = 1) and two coupling constants. At q = 0 we have

ν(0) = (4�+ 6)(f − 2g)+ 8, µ(0) = (8�+ 20)g2 + 4f − 8g, q = 0. (9)

These couplings are real for all the parameters f , g and �.
For the sake of brevity, let us put f = g = 1 from now on. With option � = 0 (in

one or three dimensions) and degree q = 1 our conditions (8) degenerate to the cubic
equation ν3 + 48ν − 360 = 0. Its only real Cardano root

ν(0) = (4√2281 + 180
)1/3 − (4√2281 − 180

)1/3 ≈ 4.95914661133166 (10)

with µ(0) ≈ 14.941997536546 and normalization h(0)1 = 1 leads to the exact

h
(0)
0 = −

(√
13686

108
+ 653

√
6

486

)1/3

−
(

653
√

6

486
−
√

13686

108

)1/3

− 2
√

6

9
, (11)

i.e., h(0)0 ≈ −3.48195017221496. The related energy E(0) = 15 corresponds to the first
excited state in s-wave. Its ground state predecessor does not terminate, q →∞. For it,
the Runge–Kutta integration gives Egs ≈ 10.943408413.

At the next choice of q = 2 with the quasi-harmonic energy E(0) = 19 and with
the same convenient normalization h(0)2 = 1 equation (8) reads

3
2µ+ ν − 52

√
6

2 µ− 32
√

6 −8
√

30√
6

2 µ− 24
√

6 7
2µ+ ν − 195

√
5µ− 96

√
5

−4
√

30
√

5µ− 64
√

5 11
2 µ+ ν − 330

0 −2
√

210
√

42
2 µ− 24

√
42


 h

(0)
0

h
(0)
1

h
(0)
2

 = 0. (12)

In an ascending order of its rows we eliminate

µ = 4
(√

5h(0)1 + 12
)
, ν = 2

[
2
√

30h(0)0 − 10
(
h
(0)
1

)2 + 3
(
11−√5h(0)1

)]
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Table 3
s-wave roots µ(0) and ν(0) for potentials (7) with f = g = 1 and q � 3.

Couplings Coefficients

q µ(0) ν(0) h
(0)
0 h

(0)
1 h

(0)
2 h

(0)
3

0 16 2 1 0 0 0
1 14.9420 4.95915 −3.48195 1 0 0
2 14.0340 7.91914 8.18810 −3.79751 1 0
2 64.3015 −2.40610 1.02613 1.82256 1 0
3 13.2932 10.8801 −15.7092 9.19559 −3.91211 1
3 62.7170 0.883427 −1.93699 −2.48533 −0.0989786 1

and

h
(0)
0 =

√
30
(
20
(
h
(0)
1

)3 − 8
√

5
(
h
(0)
1

)2 − 59h(0)1 + 48
√

5
)
/
(
180h(0)1

)
.

With h(0)1 = y
√

5 our problem degenerates to the single sextic polynomial equation with
integer coefficients,

2500y6 + 1000y5 − 7125y4 + 100y3 + 5065y2 − 264y − 1152 = 0.

Its two real roots are easily localized numerically, y1 ≈ −1.69830 and y2 ≈ 0.815078.
A close analogy with t = 1 is preserved. With the same ease we may generate the
two t = 2 oscillators from a tenth-degree polynomial at q = 3 (see table 3) etc. The
related energies were evaluated numerically. Their sample is given in table 4. They
safely stabilize at cut-off M = 15.

2.3. t = 3 and more

At any t > 1 the requirement (5) leads to the (t + q + 1) × (q + 1)-dimensional
generalization of equation (8). Its last, decoupled condition c

[t ]
q+t = 0 is satisfied if and

only if E(0) = 4t + 4q + 2�+ 3. The remaining t + q coupled equations
a0 d

[1]
0 . . . d

[t ]
0 0 . . . 0

c
[1]
1 a1 . . . d

[t−1]
1 d

[t ]
1 . . . 0

. . .

0 . . . 0 c
[t ]
t+q−2 c

[t−1]
t+q−2 c

[t−2]
t+q−2

0 . . . 0 0 c
[t ]
t+q−1 c

[t−1]
t+q−1



h0

(0)

h1
(0)

...

hq
(0)

 = 0 (13)

determine all the q normalized projections h(0)j plus t parameters in potential itself. With
the growth of t the selfconsistent search for these exact solutions becomes less and less
straightforward. Due to the implicit nonlinearity of equation (13) we must verify that
its solutions keep the potentials real and non-singular. Both these properties have to be
verified a posteriori.

It is useful to notice that at q = 0 the explicit solutions remain elementary at any
index t � 1. At t = 3 the purely non-numerical solutions still exist at q > 0. This is
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Table 4
M →∞ convergence of s-wave energies for couplings (10) in (7).

M Low lying spectrum

0 11.422198 – – – – – –
1 10.672913 15. – – – – –
2 10.945092 15. 16.2817 – – – –
3 10.944852 15. – – – – –
4 10.944169 15. 18.5146 – – – –
5 10.943697 15. 18.2954 20.8470 – – –
6 10.943435 15. 18.1857 20.2068 24.0949 – –
7 10.943317 15. 18.1222 20.0166 23.6752 28.065 –
8 10.943284 15. 18.0876 19.9294 23.5621 27.5340 34.6709
9 10.943292 15. 18.0717 19.8889 23.5096 27.4129 31.3782
10 10.943316 15. 18.0670 19.8730 23.4838 27.3538 31.2387
11 10.943343 15. 18.0682 19.8704 23.4725 27.3221 31.1673
12 10.943366 15. 18.0718 19.8743 23.4696 27.3063 31.1255
13 10.943383 15. 18.0761 19.8806 23.4711 27.3002 31.1020
14 10.943395 15. 18.0798 19.8871 23.4745 27.2999 31.0907
15 10.943402 15. 18.0828 19.8928 23.4785 27.3027 31.0874
16 10.943406 15. 18.0849 19.8971 23.4822 27.3068 31.0889
17 10.943408 15. 18.0863 19.9002 23.4851 27.3110 31.0929
18 10.943408 15. 18.0872 19.9022 23.4874 27.3147 31.0977
19 10.943408 15. 18.0876 19.9034 23.4889 27.3177 31.1023
20 10.943408 15. 18.0878 19.9040 23.4899 27.3198 31.1083

slightly unexpected. For illustration, let us employ the quartic-over-sextic model

V
(
β(0), r

) = x2 + u(0) + v(0)x2 + w(0)x4

1+ x6
. (14)

In a search for its symmetric bound states in one dimension (� = −1) the “first nontriv-
ial” choice of q = 1 gives E(0) = 17. The abbreviation h

(0)
0 = a and the eliminations

guided by our previous experience re-parametrize the couplings,

w(0) = 2
(√

2a + 27
)
, v(0) = −√2

(√
2a2 + 11a − 6

√
2
)
,

u(0) = √2
(
2a3 + 10

√
2a2 − 23a + 18

√
2
)
/2.

The whole algebra degenerates to the single equation in y = √2a,

y4 + 9y3 − 33y2 + 27y − 12 = 0, � = −1, q = 1, t = 3.

Two of its roots are complex, y3,4 = 0.451± 0.534i, and the real doublet is given by the
expression

y1,2 = −9

4
−

√√√√169

16
− 3

√√
25057 + 161

16
− 3

√
161−√25057

16
± Ya,
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Table 5
t = 3 roots u(0), v(0) and w(0) for even parity, q � 2 and potentials (14).

Auxiliary root Couplings Coefficients

z w(0) v(0) u(0) h
(0)
0 h

(0)
1

– 30. 0. 12. 1. 0.
2.0534020780474 58.107 −14.804 19.797 1.452 1.

−11.95601933076 30.088 0.5698 15.691 −8.454 1.
3.9105205273467 93.642 −33.229 33.945 1.091 2.258
2.1316238057633 86.526 29.646 15.572 0.578 1.231
−4.8208818863125 58.716 −15.324 23.422 −6.313 −2.783
−11.9379718900079 30.248 1.295 19.381 33.908 −6.892

where

Ya =

√√√√169

8
+ 3

√√
25057 + 161

16
+ 3

√
161 −√25057

16
+ |Yb|.

The last item is a positive square root of another sum,

(Yb)
2 = 28177

64
+ 3

√
161
√

25057 + 25489

128
+ 3

√
25489 − 161

√
25057

128

+ 3

√
4347
√

25057 + 688203

128
+ 3

√
688203 − 4347

√
25057

128

+ 3

√
4826809

√
25057 + 777116249

1024
+ 3

√
777116249 − 4826809

√
25057

1024
.

In the second illustration with q = 2, E(0) = 21 and abbreviations h(0)0 = a = y/
√

6,
h
(0)
1 = b = z/

√
3 and h(0)2 = 1 the eliminations

w(0) = 2
√

3
(
2b + 13

√
3
)
, v(0) = 2

√
3
(
2
√

2a − 2
√

3b2 − 7b + 12
√

3
)
,

u(0) = −3a
(
6
√

2b + 4
√

6− 4
√

3b3 − 4b2 + 31
√

3b − 64
)
,

y = 24z5 + 4z4 − 674z3 + 1437z2 + 1355z − 5292

2(20z3 + 47z2 − 117z − 604)

generate the tenth-degree polynomial in z possessing the four real roots. These results
are summarized in table 5.

3. Perturbations

Any family of phenomenological potentials may be supposed approximated by an
asymptotically harmonic Padé approximant (3) of a suitable degree t . Up to the Kth
order a consistency of its subsequent perturbative treatment is guaranteed whenever the
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remainder is kept sufficiently small, V (phenomenological)(x) − V (Padé)(x) = O(λK+1
min ) =

O(λK+1
max ). The stability of approximation requires that the more or less random poles in

V (Padé)(x) are under firm control. In the case of our class of potentials (3) this is most
easily achieved by their unique [16] partial-fraction re-arrangement

V (β, x) = ω2x2 +
M1∑
m=1

J (m)∑
j=1

σmj

(1+ emx2)j
+

N2∑
n=1

K(n)∑
k=1

µnkx
2 + νnk

[1+ (fn − 2gn)x2 + g2
nx

4]k . (15)

An instructive illustration is offered by the t = 2 example (7). The maximal admissible
range of perturbation of its couplings must be restricted by the condition of positivity
of the denominator. This means that we must have f = f (λ) > 0 or f (λ) = 0 and
g = g(λ) � 0 or 0 > f (λ) > 4g(λ) for λ ∈ (λmin, λmax).

We shall expand the perturbed wave functions in the same modified oscillator basis
as above,

ψ(λ, r) = B(r)
∞∑
n=0

hn(λ)〈r|n〉 ≡
∞∑
n=0

hn(λ)〈r|4n〉, B(r) =
t∑

d=0

Bdx
2d . (16)

This leads to the infinite-dimensional Schrödinger equation[
H(λ)− E(λ)D(λ)]�h(λ) = 0. (17)

It degenerates back to the finite-dimensional problems of preceding section in the unper-
turbed limit β → β(0).

3.1. Phenomenological appeal of Padé oscillators

The degree t in equation (3) specifies also a half-bandwidth of our (2t + 1)-
diagonal quasi-Hamiltonians [H(λ) − E(λ)D(λ)]. This t = t[J (1), . . . , J (M1),K(1),
. . . , K(N2)] grows rather quickly with all its arguments. Vice versa, the very first t’s
already offer a rich variety of possible shapes of the phenomenological potential (cf.
figures 2 and 3).

In the simplest t = 1 example (1) the numerically calculated λ- or β-dependence of
energies exhibits a roughly quadratic shape, β ∼ (E+const)2+const. For the four lowest
states this is illustrated by figures 1 and 4. The exceptional exact energies (marked by
crosses) are scattered all over the coupling-energy plane. These quasi-harmonic points
may be inter-connected by auxiliary lines (cf. figures 5 and 6 and ref. [17]). In a way,
these lines generalize the harmonic spectrum to β(0) �= 0. Their distinguished feature
seems to be an asymptotically almost equidistant and almost linear shape, resembling
strongly their harmonic predecessor.

Only the first few energies exhibit in fact a pronounced non-equidistant spacing.
The onset of the almost equidistant behaviour moves only slowly up with the growth of
β(0). The approximate linearity of dependence of the nth energy level En on the value of
the coupling β is remarkable. We may expect that the first-order perturbation formulae
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Figure 2. Three potentials (3) supporting the exact ground state at zero energy.

Figure 3. Three potentials (3) supporting the exact first excited state at zero energy.

will reproduce the t = 1 energies E(λ) with decent precision in a broad interval of their
λ-dependence.

It is well known that in the context of studies of double wells one of the big chal-
lenges to perturbation theory is posed by the related approximate degeneracy between
the even and odd states. An explicit illustration of this phenomenon is provided by ta-
ble 1. It indicates that the long-lasting puzzle of perturbations of the quasi-degenerate
spectra in the deep double wells may find one of its very natural resolutions in the present
language since our formalism treats the states with different parity as perturbations of
different systems. For example, in between the first two couplings of the table [i.e.,
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Figure 4. An empirical fit Y(E) = a + bE + cE2 of the couplings β = β(E). The thin and thick crosses
denote the respective numerical and non-numerical levels at various β(0).

Figure 5. The seven lowest energies for the seven lowest barriers β(0) in (1). The auxiliary “Gallas” lines
connect the symmetric (upper curve) and asymmetric (lower curve) exact levels with growing q.
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Figure 6. Several “Gallas” lines in a bigger part of the E − β plane.

for β ∈ (64.89 . . . , 81.88 . . .)] one should calculate the ground state energies as pertur-
bations of E(0) = 17 while the very close first excitations should be perturbations of
E(0) = 19 in another potential. In low orders the split of energies will probably remain
disguised by errors of their separate perturbative determinations but the related quasi-
degenerate eigenfunctions themselves become clearly distinguished by their parity.

3.2. Rayleigh–Schrödinger expansions nearβ(0)

The measure λ = β − β(0) of deviation of our perturbed Schrödinger equation
from its zero-order form should be sufficiently small in the Kato’s sense [18]. Then, any
analytic λ-dependence of the matrices

D(λ) = D(0)+λD(1)+λ2D(2)+· · · , H(λ) = H(0)+λH(1)+λ2H(2)+· · · , (18)

may be expected to imply the validity of the energy series (2) and of its wave function
counterpart

hj = hj(λ) = hj(0)+ λh(1)j + λ2h
(2)
j + · · · . (19)

This transforms our λ-dependent Schrödinger equation into a set of its separate O(λk)
components. At k = 0, the unperturbed problem [H(0) − E(0)D(0)]�h(0) = 0 of
preceding section is re-obtained. Next we get its O(λ) descendant[

H(0)− E(0)D(0)
]�h(1) = [E(0)D(1) −H(1)]�h(0)+ E(1)D(0)�h(0). (20)
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In compact notation with abbreviations �τ (0) ≡ [E(0)D(1) −H(1)]�h(0), �ρ{0} ≡ D(0)�h(0)
andM = H(0)−E(0)D(0) this equation shares its form with all the subsequent O(λk)
equations

M�h(k) = �τ (k−1) + E(k) �ρ{0} (21)

requiring only the further abbreviation

�τ (1) = [E(0)D(2) + E(1)D(1) −H(2)]�h(0)+ [E(0)D(1) + E(1)D(0)−H(1)]�h(1)
and, in general,

�τ (k−1)=
[

k−1∑
j=0

E(j)D(k−j) −H(k)

]
�h(0)

+
k−1∑
m=1

[
k−m−1∑
i=0

E(i)D(k−m−i) + E(k−m)D(0)−H(k−m)
]
�h(m). (22)

As long as detM = 0 each particular solution �h(k) may contain an arbitrarily large
admixture of the zero-order column vector �h(0). This is the well known renormalization
freedom of perturbative wave functions in quantum mechanics. We get rid of it by the
normalization h(k)q = 0 in each perturbation order k > 0. Such a convention differs
from the standard textbook recommendations but serves the same purpose and makes
the solutions of our key equation (21) well defined.

3.3. Example: tridiagonalM

Let us choose t = 1, fix the nodal count q and accept an exact solution at β = β(0)

as our illustrative (0)-superscripted zero-order approximation. The perturbed couplings
β = β(0)+λ and B = B(0)+λB(1)+· · · with a small measure of perturbation λ �= 0 enter
the infinite dimensional Schrödinger equation (4) or (17). After appropriate insertions
we get the t = 1 set of equations (21),

a
(0)
0 d

(0)
0

c
(0)
1 a

(0)
1 d

(0)
1

c
(0)
2 a

(0)
2

. . .

. . .
. . .



h
(k)
0

h
(k)
1

h
(k)
2
...

 = E(k)


ρ
(0)
0

ρ
(0)
1

ρ
(0)
2
...

+

τ
(k−1)
0

τ
(k−1)
1

τ
(k−1)
2
...

 . (23)

Only the first q + 2 components of �ρ(0) = D(0)�h(0) are nonzero since
ρ
(0)
0

ρ
(0)
1

ρ
(0)
2
...

 =

a
{kin}
0 d

{kin}
0

c
{kin}
1 a

{kin}
1 d

{kin}
1

c
{kin}
2 a

{kin}
2

. . .

. . .
. . .



h
(0)
0

h
(0)
1

h
(0)
2
...

 , (24)
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a{kin}n = (1+ f (0)αn), d{kin}n = f (0)βn, c{kin}n = f (0)βn−1.

In contrast, the compressed previous-order (i.e., already known) corrections τ (k−1)
j only

terminate in the first order, at k = 1.

3.3.1. Ground-state illustration
In the k = 1 and q = 0 exemplification of equation (23)

0 d(0)0 0 . . .

0 a(0)1 0 0 . . .

0 c(0)2 a
(0)
2 d

(0)
2 . . .

0 0 c
(0)
3 a

(0)
3 . . .

...
. . .

. . .





0
h
(1)
1

h
(1)
2

h
(1)
3
...


=


τ
(0)
0

0

0
0
...

+ E
(1)



ρ
{0}
0

ρ
{0}
1

0
0
...

 (25)

the first two energy-dependent rows decouple from the rest. For the even-parity � = −1
they read

−2
√

2h(1)1 =−β(1) + 3E(1)/2,
β(0)h

(1)
1 =E(1)/

√
2.

As long as β(0) = 6 and β(1) = 1 their solution reproduces the current textbook first-
order overlap formula for the energy,

E(1) =
∫∞
−∞ exp(−x2)(1+ x2) dx∫∞
−∞ exp(−x2)(1+ x2)2 dx

= 6

11
. (26)

This test demonstrates the user-friendliness of our non-Hermitian recipe.

3.3.2. The first excitation
In our preceding illustration we did not mark the cut-off M in M. For the next,

q = 1 state with M = 6 (chosen small for paedagogical purposes) we have to solve the
set



a0 0 0 0 0 0 0
c1 0 d1 0 0 0 0
0 0 a2 0 0 0 0
0 0 c3 a3 d3 0 0
0 0 0 c4 a4 d4 0
0 0 0 0 c5 a5 d5

0 0 0 0 0 c6 a6





h
(k)

0
0
h
(k)

2

h
(k)
3

h
(k)
4

h
(k)

5

h
(k)

6


=



τ
(k−1)
0

τ
(k−1)
1

τ
(k−1)
2

τ
(k−1)
3

τ
(k−1)
4

τ
(k−1)
5

τ
(k−1)
6


+ E(k)



ρ
{0}
0

ρ
{0}
1

ρ
{0}
2

0
0
0
0


. (27)

The upper part of this equation (separated by the inset lines) stays decoupled. We can un-
derline that in contrast to the current textbook recipe we do not need any left eigenvector
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ofM and still can define the kth energy correction via the finite, (q+ t+1)-dimensional
matrix inversion a0 ρ

{0}
0 0

c1 ρ
{0}
1 d1

0 ρ
{0}
2 a2


 h

(k)
0

−E(k)

h
(k)
2

 =
τ

(k−1)
0

τ
(k−1)
1

τ
(k−1)
2

 . (28)

In the second, lower part of equation (27) the cut-off M should grow to infinity in
principle. The matrix-inversion evaluation of the remaining wave function components
h
(k)

q+t+1, h(k)q+t+2, . . . is much more difficult and acquires a purely numerical character. In

a schematic representation �h(k) ∼ R�τ (k−1) + · · · the “unperturbed propagator” R is a
general, fully non-diagonalmatrix.

3.3.3. The higher excitations
The size of the upper part of equation (23) grows with q (cf. (25) and (27)). Only

its last, (q + 1)-subscripted line remains trivial. As long as c(0)q+1 = 0, d(0)q+1 = 0 and

a
(0)
q+1 = g(0) > 0, it degenerates to an explicit definition of the (q + 1)-st coefficient in

terms of the not yet specified energy,

h
(k)

q+1 =
E(k)ρ

(0)
q+1 + τ (k−1)

q+1

g(0)
. (29)

Thus, in practice, our equation (23) decays in the two equally difficult subsystems at the
larger q. Its upper q + 1 rows are, fortunately, not as complicated as they look. Firstly,
an immediate elimination of energies may help for q � 1. It proves unexpectedly easy
since the array �ρ(0) is a left eigenvector of our non-Hermitian quasi-Hamiltonian M.
The left action of this vector on equation (21) eliminates all h(k)n ’s and defines the kth
energy correction at any t ,

E(k) = −
∑q+t

m=0 ρ
(0)
m τ (k−1)

m∑q+t
n=0

(
ρ
(0)
n

)2 . (30)

With this knowledge, equation (29) determines h(k)q+1. At the exact energy (30) an abbre-
viated right-had-side vector τ̃ (k−1)

m ≡ τ (k−1)
m +E(k)ρ(0)m , m = 0, 1, . . . enters the equation

(23) whose first q + 1 separate rows become linearly dependent. We omit the very first
one as redundant. Simultaneously, our normalization h(k)q = 0 annihilates a column in
M and we get the reduced equation

c
(0)
1 a

(0)
1 d

(0)
1

c
(0)
2 a

(0)
2 d

(0)
2

. . .
. . .

. . .

c
(0)
q−1 a

(0)
q−1

c(0)q





h
(k)
0

h
(k)
1
...

h
(k)
q−2

h
(k)
q−1

 =

τ̃
(k−1)
1

τ̃
(k−1)
2
...

τ̃
(k−1)
q−1

τ̃ (k−1)
q

 . (31)
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This gives a non-diagonal, upper triangular generalization
h
(k)

0

h
(k)

1
...

h
(k)

q−2

h
(k)
q−1

 =


1/c(0)1 R12 . . . R1q

1/c(0)2 R23 . . . R2q
. . .

. . .
...

1/c(0)q−1Rq−1q

1/c(0)q




τ̃
(k−1)
1

τ̃
(k−1)
2
...

τ̃
(k−1)
q−1

τ̃ (k−1)
q

 (32)

of the current rule based on a diagonal unperturbed propagator. Unfortunately, any ex-
tension of the latter trick fails. For all t > 1 a different approach is needed.

4. New recipe using triangular propagators

Previous examples clarified an exceptional role of the (q + t)th row inM where
cq+t = dq+t = 0. The trick is not fully transferable to t > 1 [8]. At the higher
t’s, one is usually expected to simplify the matrixM by a brute force diagonalization.
This would be a purely numerical step of course. In what follows we are going to
describe a more analytic approach. It will lie somewhere in between the fully analytic
(schematically, t = 0) and purely numerical (i.e., pre-diagonalization) extremes: Our
unperturbed propagators R will be constructed as sparse, triangular matrices.

The presentation of this material will be split in three parts. Firstly, using just t = 1
for simplicity, section 4.1 explains the idea of constructing R in the upper triangular
form. Secondly, section 4.2 employs the next, t = 2 example and explains the alternative
approach using the lower triangular unperturbed propagators.

We believe that this gives a clear guide to the general t’s. Still, an abstract and
detailed description of our innovated perturbation theory (with any t) is offered in the
appendix. The reason is that, building on the reader’s experience with our previous
examples, we may introduce a less transparent but much more compact notation. More-
over, we also relax there the immediate connection of our technique to some peculiarities
(e.g., one-dimensional nature) of our illustrative example (3).

4.1. Upper triangular propagators:t = 1 example

We have split our equation (23) into the separate rule (29), the upper part (31) with
solution (32) and the lower part

a
(0)
q+2 d

(0)
q+2

c
(0)
q+3 a

(0)
q+3 d

(0)
q+3

c
(0)
q+4 a

(0)
q+4

. . .

. . .
. . . d

(0)
M−1

c
(0)
M a

(0)
M





h
(k)

q+2

h
(k)
q+3

h
(k)
q+2
...

h
(k)
M

 =


τ̃
(k−1)8
q+2

τ̃
(k−1)
q+3

τ̃
(k−1)
q+4
...

τ̃
(k−1)
M

 (33)
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truncated at certain M � q + 2 and containing, on its right-hand side, a re-defined,
8-superscripted known quantity τ̃ (k−1)8

q+2 = τ̃
(k−1)
q+2 − c(0)q+2h

(k)
q+1.

For a clear explanation of our main idea let us now drop the superscripts and choose
q = 1 and M = 6 again. This returns us back to our pedagogical example (27) re-written
now in a re-partitioned, equivalent square-matrix form

c3 a3 d3

c4 a4 d4

c5 a5 d5

c6 a6

c7



h2

h3

h4

h5

h6

 =


τ̃3

τ̃4

τ̃5

τ̃6

c7h6

 , (34)

where h2 is already known and a trivial last row c7h6 = c7h6 has been added. The trick is
that we may now remove the cut-off completely. The infinite-dimensional left-hand-side
matrix

Z−1 =


c
(0)
q+2 a

(0)
q+2 d

(0)
q+2

c
(0)
q+3 a

(0)
q+3 d

(0)
q+3

c
(0)
q+4 a

(0)
q+4

. . .

. . .
. . .

 (35)

is regular. It may be inverted in an algebraic, non-numerical and cut-off-independent
manner, “forgetting” our use of the vectors with M = 6, i.e., τ̃7 = c7h6 and h6+j = 0
and τ̃7+j = 0 for all j = 1, 2, . . . . We may conclude that once we know our upper
triangular propagator matrix Z we may pre-multiply by it equation (34) from the left
and get the final wave function defined by the formula

h
(k)
q+m = µ

(k−1)
q+m + h(k)M cM+1ν

(0)
q+m, m = 1, 2, . . . ,M − q − 1, (36)

at any cut-off M � q + 1. Both its components have just an elementary form

µ
(k−1)
q+1

µ
(k−1)
q+2
...

µ
(k−1)
M−2

µ
(k−1)
M−1

 = Z


τ̃
(k−1)
q+2

τ̃
(k−1)
q+3
...

τ̃
(k−1)
M−1

τ̃
(k−1)
M


,



ν
(0)
q+1

ν
(0)
q+2

...

ν
(0)
M−2

ν
(0)
M−1

 =

Z1,M−q
Z2,M−q

...

ZM−q−2,M−q
ZM−q−1,M−q

 . (37)

This is a key point of our considerations. Starting from the first omitted index m = M−q
our equation (36) is an identity. At the first admitted(and exceptional) index m = 1
this equation defines, paradoxically, the right-hand side quantity hM itself. Indeed, the
pertaining left-hand side value hq+1 is already known.

In equation (37) an ascendingrecurrent evaluations may be recommended as giv-
ing, step by step, µ(k−1)

M−1 = τ̃
(k−1)
M /c

(0)
M etc. Our recipe is complete. We may summarize:

In a deeply anharmonic double well regime, the partial solvability of our unperturbed



M. Znojil / Perturbation method with triangular propagators 157

system and the reducibility of its propagator to a triangular matrix implies the feasibil-
ity of an innovated perturbation construction with propagator R of an upper triangular
matrix form.

An additional, marginal remark is due. If needed, the recurrences (37) may be
solved in a closed form

µ
(k−1)
M−m−1 =

(−1)m

c
(0)
M c

(0)
M−1 · · · c(0)M−m

F, (38)

where

F = det



a
(0)
M−m d

(0)
M−m 0 . . . 0 τ̃

(k−1)
M−m

c
(0)
M−m+1 a

(0)
M−m+1 d

(0)
M−m+1 . . . . . . τ̃

(k−1)
M−m+1

0
. . .

. . .
. . .

...
...

. . .

0 . . . 0 c
(0)
M−1 a

(0)
M−1 τ̃

(k−1)
M−1

0 . . . 0 c
(0)
M τ̃

(k−1)
M


(39)

due to the Kramer’s rule.

4.2. Lower triangular propagators:t = 2 example

Let us consider the pentadiagonal version of equation (21),



a0 d
[1]
0 d

[2]
0 0 0 0 . . .

c
[1]
1 a1 d

[1]
1 d

[2]
1 0 0 . . .

c
[2]
2 c

[1]
2 a2 d

[1]
2 0 0 . . .

0 c
[2]
3 c

[1]
3 a3 d

[1]
3 d

[2]
3 . . .

0 0 c
[2]
4 c

[1]
4 a4 d

[1]
4 . . .

...
. . .

. . .
. . .

. . .





h
(k)
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(h
(k)
1 )

h
(k)
2

h
(k)

3

h
(k)

4
...


=



τ
(k−1)
0

τ
(k−1)
1

τ
(k−1)
2

τ
(k−1)
3

τ
(k−1)
4
...


+ E(k)



ρ
{0}
0

ρ
{0}
1

ρ
{0}
2

ρ
{0}
3

ρ
{0}
4
...


with, say, q = 1, i.e., c[2]3 = d

[2]
3 = 0 and ρ{0}4 = ρ

{0}
5 = · · · = 0. After the insertion of

energy (30) we sum the two right hand side vectors in one, τ (k−1)
j +E(k)ρ

{0}
j ≡ τ̃

(k−1)
j , and

omit the 3-subscripted row (between lines). Simultaneously our normalization h(k)q = 0
(in parenthesis) annihilates the second column inM.

Moving further the first t − 1 (i.e., one) plus one (exceptional, (q + t)th) columns
ofM to the right hand side and dropping the redundant superscripts (k) and (k−1) we get
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the equivalent equation

Z−1



h2

h3

h4

h6
...

hM+2

0
...


=



τ̃0

τ̃1

τ̃2

τ̃4
...

τ̃M
τ̃ 8M+1
...


− h0



ρ
{1}
0

ρ
{1}
1

ρ
{1}
2

ρ
{1}
4
...

ρ
{1}
M
...
...


− h5



ρ
{2}
0

ρ
{2}
1

ρ
{2}
2

ρ
{2}
4
...

ρ
{2}
M
...
...


(40)

with the appropriate auxiliary τ̃ 8M+1 = c
[2]
M+1hM−1 + c

[1]
M+1hM and τ̃ 8M+2 = c

[2]
M+2hM

(while τ̃ 8M+3 = τ̃ 8M+4 = · · · = 0), with ρ{1}0 = a0 etc., ρ{2}4 = d
[1]
4 etc. and with the lower

triangular and infinite matrix

Z−1 =



d
[2]
0

d
[1]
1 d

[2]
1

a2 d
[1]
2 d

[2]
2

c
[2]
4 c

[1]
4 a4 d

[2]
4

0 c
[2]
5 c

[1]
5 d

[1]
5 d

[2]
5

...
. . .

. . .
. . .

. . .
. . .


.

This pentadiagonal matrix is easily invertible since its main diagonal is all non-zero.
Indeed, by construction, n �= t + q in d [t ]n = Bt [εn− εt+q]〈n|r2t |n+ t〉. The action of Z
upon equation (40) from the left gives our final wave functions



h2

h3

h4

h6
...

hM+2


= Z



τ̃0

τ̃1

τ̃2

τ̃4
...

τ̃M


− h0 Z



ρ
{1}
0

ρ
{1}
1

ρ
{1}
2

ρ
{1}
4
...

ρ
{1}
M


− h5 Z



ρ
{2}
0

ρ
{2}
1

ρ
{2}
2

ρ
{2}
4
...

ρ
{2}
M


. (41)

The seemingly redundant last two rows form in fact a core of the whole construction:
With the well known left-hand side values of hM+1 = hM+2 = 0 they must be read as the
two necessary linear algebraic equations needed to determine the two “input parameters”
h0 and h5.
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Table 6
Double test: Interpolation (42) between the two solvable potentials.

“Large” coupling λ = 1 δ = 1− λ = 1

Ground state First excitation

unperturbed energy 11.0000 15.0000
the first correction −0.0449 −0.0985
k = 1 approximation 10.9551 14.9015

Runge Kutta value 10.9434 14.6332

4.2.1. An illustration
A straightforward transition to the general t’s does not require any new ideas but

merely an appropriate “shorthand” notation. Its explicit description may be found in
the appendix. A nontrivial advantage of its more abstract language is that one can im-
mediately work with a much more general class of Hamiltonians, say, with their non-
Hermiticity and asymmetry related to the phenomenological absorption, etc. At the same
time, even our simple Padé oscillators may provide a number of useful applications.

Flexibility of our fairly weak assumptions may lead to a few non-standard construc-
tions. Imagine just an interpolationbetween two zero-oder models. Thus, our previous
t � 2 solvable model (7) may be re-interpreted as the new potential

V[b](δ, r) = r2 + [16+ (1− δ)µ(1)]r2 + [2+ (1− δ)ν(1)]
1− r2 + r4

(42)

also solvable at δ = 0. With a new “small” parameter δ = 1− λ and the new couplings

µ(1) = 14.941997 . . . − 16 ≈ 1.05800, ν(1) = 4.959146 . . . − 2 ≈ 2.95915

this leads to a methodically appealing linear interpolation between the two solvable
cases.

This may serve as a test of our method. In table 6 the first-order precision compares
well with the purely numerical exact energies. In a way paralleling our above t = 1 test
(26) the usual evaluation of the t = 2 overlap integrals is much more tedious of course.
Although the integrators in MAPLE [19] still manage and offer their evaluation, the
immediate algebraic solution of our linear algebraic three-by-three equations proves,
definitely, much preferable.

5. Summary

Our present recipe treats a phenomenological Schrödinger equation in three steps.
In the preliminary one we choose the potential in its Padé (or perturbed Padé) asymp-
totically harmonic representation (3). In the next preparatory stage the rational potential
with 2t + 1 free parameters is assigned a suitable solvable zero-order approximant with
as many as t + 1 free parameters. We pick up the parity (or angular momentum) � and
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degree q of the unperturbed wave function and determine, algebraically, all the para-
meters which are constrained by the solvability. In the third step we finally apply our
modified or innovated Rayleigh–Schrödinger perturbation algorithm. In each order we

• compress our knowledge of preceding corrections (say, in an auxiliary vector �τ given
by formula (22)) and, if needed,

• define immediately the new energy (by equation (30));

• construct another auxiliary array (in general, vector �θ defined by recurrences (48) in
the appendix);

• choose a cut-off M � 1;

• satisfy the M-dependent model-space constraints (i.e., t + 1 linear equations (50) +
(51) in general);

• evaluate all the missing components of the wave function corrections (their general
form is given by equation (46) below).

As a comfortable methodical alternative to the current prescriptions our innovated pro-
cedure admits a non-diagonality of unperturbed Hamiltonians and avoids the necessity
of their pre-diagonalization at λ = 0. Its computational efficiency stems from its conse-
quently recurrent character.

For practical puposes, it is promising that our recipe is reducible, basically, just
to a single recurrence relation per each perturbation order. This lowers the common
danger of a possible undetected numerical loss of precision, further suppressed here
(and especially in the context of non-linear algebra in the zero-order constructions) by
the high-precision computer arithmetics and programming in MAPLE [19].

Originally, our choice of the illustrative rational potentials (3) has been motivated,
mathematically, by a comparative smallness of their short-range perturbations. A poste-
riori , numerical tests clarified their phenomenological appeal. The flexibility of their
shapes proved paralleled by the “fairly dense” occurrence of their partially solvable
bound states. Indeed, their observables (e.g., energies) exhibit often an almost linear
or quadratic coupling-dependence. In a way extending the t = 1 observations by Gallas
[17] this supports a very good precision of perturbative predictions over a major part
of the coupling space. We may expect a facilitated tractability of potentials with less
common (e.g., multiple well) shapes. The frequent physical need of analysis of large
variations of realistic models seems to have found here an adequate computational tool.

Appendix. Perturbation construction without left eigenvectors

The main mathematical starting point of all our previous considerations was the
linear algebraic zero-order Schrödinger equation M(E(0))�h(0) = 0 with elements such
that

Mm,m+t+j = 0, m = 0, 1, . . . , j = 1, 2, . . . ,
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Mn,n+t = d [t ]n > 1/D > 0, n = 0, 1, . . . , n �= n0 = t + q, (43)

Mn0,n0+t = d [t ]n0
= 1/D, 1/D→ 0.

Let us now forget about any one-dimensional interpretation or Padé-oscillator origin of
these matrices which are, by assumption, non-Hermitian. In such a case, it is natural to
suppose that the left eigenvector ofM is infinite-dimensional and ceases to be available.
This appendix will show that (and how) our formalism remains applicable even without
this auxiliary array.

A. Notation

The mathematical importance of the upper-diagonal dominance (43) inM lies in
its relevance for recurrences. Up to the exceptional n = n0, each (i.e., the nth) row of our
equation (21) may be read as an explicit recurrent definition of its “leftmost” unknown
h(k)n . The exception is unpleasant and its naive ∗-superscripted regularization

d [t ]∗n =
{
D �= 0, for n = n0 = t + q,
d [t ]n , otherwise, (44)

would produce a wrong value of h
(k
2t+q without the limiting transition D → ∞.

A slightly more sophisticated recipe must be used. For its general formulation, the en-
ergy E(k) and elements �h(k) will be split in a pair of arrays �ζ and �ξ . The former vector
will be finite, containing just the t + 1 “difficult” components: energy E(k) ≡ ζ0, initial
values h(k)j ≡ −ζj , j = 1, 2, . . . , t − 1 (let us now prefer h(k)0 = 0 for normalization)

and the exempted h
(k)

2t+q ≡ −ζt . All the remaining unknowns will lie in the infinite-

dimensional vector �ξ such that ξj = h
(k)
j+t , j = 0, 1, . . . , j �= q (notice that j = q

would double-count the exceptional h(k)2t+q).
For the time being, let us leave the undetermined component of the new vector

�ξ free. The presence of this new temporary variable z ≡ ξt+q opens the possibility
of a straightforward elimination of the vectors �ξ as functions of the finite number of
unknowns in �ζ . Indeed, with an index j out of the interval j = 1, 2, . . . , t − 1 we may
abbreviate all the j th (i.e., leftmost) columns of our zero-order matrixM as respective
vectors �ρ{j} distinguished by the braced superscript. We move them all to the right-hand
side of equation (21). This will reduce the left-hand side matrixM (acting on a vector)
to the mere triangular submatrix denoted as Z from now on (and acting on a subvector).
After the above simple-minded replacement (44) giving

Z → Z∗ =


d
[t ]∗
0 0 0 0 . . .

d
[t−1]
1 d

[t ]∗
1 0 0 . . .

d
[t−2]
2 d

[t−1]
2 d

[t ]∗
2 0 . . .

. . .





162 M. Znojil / Perturbation method with triangular propagators

we may re-write our fundamental equation (21) in the alternative, regularized form

Z∗


ξ0

ξ1

ξ2
...

 =

τ
(k−1)
0

τ
(k−1)
1

τ
(k−1)
2
...

+
t∑

j=0

ζj


ρ
{j}
0

ρ
{j}
1

ρ
{j}
2
...

 . (45)

The last column vector �ρ{t} on the right hand side is defined as the irregular, (2t + q)th
column ofM without asterisk. The D-dependent matrix

Z∗ =



d
[t ]
0 0 . . .

d
[t−1]
1

. . . 0 . . .

d
[t−2]
2

. . . d
[t ]
t+q−1 0 . . .

...
. . . d

[t−1]
t+q D 0 . . .

. . . d
[t−2]
t+q+1

. . . d
[t ]
t+q+1

. . .

...
. . .

. . .
. . .


is manifestly regular and invertible at any choice of D > 0. It defines the unique value
of z = z(D) as well as the rest of the left-hand-side vector

ξ0
...

ξt+q−1

z

ξt+q+1
...


.

Let us summarize: We have achieved a completely recurrent solvability of our infinite-
dimensional equation (45). Indeed, its first row defines ξ0 = h

(k)
t etc. This is the key

computational benefit of our new recipe. Of course, two auxiliary parameters (viz., D
and z) were introduced so that the results carry more information than before. It easily
follows from our construction that at any D �= 0 our new equation remains precisely
equivalent to its predecessor (21) if and only if the second variable z vanishes, z = 0.
Let us now pay attention to this condition.

B. Reduction to a model space

As long as, by construction, detZ∗ �= 0, equation (45) could be solved by an
immediate matrix inversion at an arbitrary t , D and z, �ξ = (Z∗)−1

(�τ (k−1) +∑t
j=0 �ρ{j}

)
.
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This would specify the infinite-dimensional left-hand side vector �ξ as a finite sum,ξ0

ξ1
...

 =
θ

(k−1)
0

θ
(k−1)
1
...

+ t∑
j=0

ζj

η
{j}
0

η
{j}
1
...

 . (46)

Accepting this idea, we may even try to determine each of the right-hand side compo-
nents separately. This would be a tremendous simplification of the algorithm since the
last t + 1 individual recurrences are order-independent, d

[t ]∗
0 0 0 . . .

d
[t−1]
1 d

[t ]∗
1 0 . . .

. . .


η
{j}
0

η
{j}
1
...

 =
ρ
{j}
0

ρ
{j}
1
...

 , j = 0, 1, . . . , t. (47)

They just “reparametrize” a part of our zero-order Hamiltonian. Only the very first
definition will vary with the order k, d

[t ]∗
0 0 0 . . .

d
[t−1]
1 d

[t ]∗
1 0 . . .

. . .


θ

(k−1)
0

θ
(k−1)
1
...

 =
τ

(k−1)
0

τ
(k−1)
1
...

 . (48)

Still, it depends neither on the unknown energy E(k) nor on the unknown coefficients �h(k).
We may say that it “compactifies” the previous, known results E(k−1), �h(k−1),E(k−2), . . . ,
and “compresses” them into a new input vector �θ(k−1) = (Z∗)−1 �τ (k−1).

It remains for us to find the values of the t + 1 unknown parameters ζj . For this
purpose we return to the “forgotten” truncation conditions

ξM+1 = ξM+2 = · · · = ξM+t = 0. (49)

In the present notation these requirements read

θ
(k−1)
M+1 +

t∑
j=0

η
{j}
M+1ζj = 0,

θ
(k−1)
M+2 +

t∑
j=0

η
{j}
M+2ζj = 0,

. . .

θ
(k−1)
M+t +

t∑
j=0

η
{j}
M+t ζj = 0,

(50)

and suppress the variability of parameters �ζ . By construction, all these equations still
depend on our auxiliary and, generically, nonvanishing variable z. Vice versa, the va-
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lidity condition z = 0 may only be re-introduced as an additional, explicit requirement
ξt+q = 0, i.e., as the (t + 1)-st equation

θ
(k−1)
t+q +

t∑
j=0

η
{j}
t+qζj = 0. (51)

The concatenated system (51) + (50) of t + 1 conditions is our final model-space-like
formula. It defines all the t + 1 parameters collected in the array �ζ .

At the correct value of energy (30) our auxiliary regularization variable z becomes
identically equal to zero and the redundant equation (51) may be omitted. Our model-
space-like boundary conditions then degenerate to the mere t equations (50).

C. Illustrations

In the real fixed-point arithmetics an accumulation of errors may make the numeri-
cal value of z (i.e., the right-hand side of equation (51)) still slightly different from zero.
Nevertheless, as long as the components of the latter equation itself are all of the order
O(D−1) for large D � 1 (cf. equation (54)) the errors accumulate in the product Dz
rather than in the quantity z itself. The choice of a sufficiently large D→∞ settles the
problem of errors.

C.1. t = 1

After we return to t = 1 for illustration, the last line of equation (28) will represent
our z = 0 constraint (51). Similarly, the last line of equation (27) plays the role of the
second constraint (50). Once we define the auxiliary two-column matrix η,

�η{0} = (Z∗)−1


ρ
{0}
0

ρ
{0}
1
...

ρ
{0}
q+1

 , �η{1} = (Z∗)−1


0
...

0
aq+2(0)
cq+3(0)


the inverse matrix in the pair of equations (51) and (50) remains triangular,(−E(k)

h
(k)
q+2

)
=
(
η
{0}
q+1 0

η
{0}
M+1 η

{1}
M+1

)−1 (
θ
(k−1)
q+1

θ
(k−1)
M+1

)
, M � q � 0, t = 1. (52)

This means that in any order k and at an arbitrary termination q and/or cut-off M < ∞
the definition of energies E(k) remains finite-dimensional.
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C.2. t = 2

Above, we have already chosen q = 1 and M = 6 for illustration at t = 2. Here,
this gives the triangular regularized submatrix Z∗ which has the ordinary square-matrix
form

Z∗ =



d
[2]
0 0 0 0 0 0 0

d
[1]
1 d

[2]
1 0 0 0 0 0

a2 d
[1]
2 d

[2]
2 0 0 0 0

c
[1]
3 a3 d

[1]
3 D 0 0 0

c
[2]
4 c

[1]
4 a4 d

[1]
4 d

[2]
4 0 0

0 c
[2]
5 c

[1]
5 a5 d

[1]
5 d

[2]8
5 0

0 0 c
[2]
6 c

[1]
6 a6 d

[1]8
6 d

[2]8
6


, t = 2.

Its elements marked by the superscript8 are in fact arbitrary but, wherever possible, we
shall keep them strictly equal to their nonzero unmarked values. Such a convention (with
d
[2]8
5 = d

[2]
5 , d [2]86 = d

[2]
6 and d [1]86 = d

[1]
6 ) makes our construction less cut-off-dependent.

Only the single element d [2]83 ≡ D �= 0 remains really indeterminate.

C.3. D ≈ 0

Whenever the value of D vanishes in a “correct” limit D → 0, matrix Z drops its
asterisk and equation (21) acquires its non-recurrent, pseudo-inversion form,

Z



h
(k)

2

h
(k)

3

h
(k)
4

0

h
(k)
6

h
(k)8
7

h
(k)8

8


=



τ
(k−1)
0

τ
(k−1)
1

τ
(k−1)
2

τ
(k−1)
3

τ
(k−1)
4

τ
(k−1)
5

τ
(k−1)
6


+ E(k)



ρ
{0}
0

ρ
{0}
1

ρ
{0}
2

ρ
{0}
3

0
0
0


− h(k)1



d
[1]
0

a1

c
[1]
2

0
0
0
0


− h(k)5



0
0
0
0

d
[1]
4
a5

c
[1]
6


. (53)

Step by step, it defines the “upper” coefficients h(k)2 , h(k)3 and h
(k)
4 as functions of the

energy andof another undetermined parameter h(k)1 . Similarly, the first “lower” nonzero
coefficient h(k)6 is specified as a quantity which depends on all the “upper” coefficients
pluson a new parameter h(k)5 . At the end, the correct values of our three unknown vari-
ables should be fixed by the “forgotten” fourth row and by the two truncation conditions
h
(k)8

7 = h
(k)8

8 = 0.
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C.4. D � 1

In the example (53), the regularization Z(D = 0) → Z∗(D �= 0) leads to the
equivalent equation (45) if and only if the contributions proportional to z vanish, z→ 0.
The situation remains virtually unchanged when we admit a growth of q. We may invert,
in partitioned notation,

(
Z∗
)−1 =

Z1 0 0

uT D 0

Z3 w Z2


−1

=
 Z−1

1 0 0

−D−1uTZ−1
1 D−1 0

Z−1
2 CZ−1

1 −Z−1
2 wD−1 Z−1

2

 (54)

(with C = −Z3 + D−1wuT ) and define the three order-independent and infinite-
dimensional vectors

(�η{0}, �η{1}, �η{2}) = (Z∗)−1





ρ
{0}
0
...

ρ
{0}
q+1

ρ
{0}
q+2
0
...

0


,



d
[1]
0
...

c
[2]
3
0
...
...

0


,



0
...
...

0
d
[1]
q+3
...

c
[2]
q+6




. (55)

It is easy to show that the D-dependence of these components of the wavefunction
corrections (cf. equations (45) and (54)) implies their linear z-dependence. We may
choose D � 1 and get the small numerical span of z = O(D−1), i.e., only a small
spuriosity in our tentative z �= 0 wavefunctions, h(k)j (z) = h

(k)
j (0) + O(z). In the

limit D → ∞ we just return to the formulae studied above. Nevertheless, also
any time beforesuch a limiting transition, equations (51) and (50) define our last un-
known parameters �ζ in terms of the vectors (55), via the three-dimensional matrix inver-
sion −E

(k)

h
(k)
1

h
(k)
q+4

 =
 η

{0}
q+2 η

{1}
q+2 0

η
{0}
M+1 η

{1}
M+1 η

{2}
M+1

η
{0}
M+2 η

{1}
M+2 η

{2}
M+2


−1θ

(k−1)
q+2

θ
(k−1)
M+1

θ
(k−1)
M+2

 , M � q � 0. (56)

The occurrence of a zero matrix element is a peculiarity of the scheme (cf. equa-
tion (55)).
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